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Steady-state temperature in a roll subject to surface heating and
convection cooling
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Abstract. An iterative procedure, in which an analytical solution known for a simpler problem is used to obtain the
solution to a problem with much more complicated non-linear boundary conditions, is presented. Sufficient
convergence conditions in S.L. Sobolev's space W}(A) are established. This algorithm can be useful when fast
solutions are required, for example, in controlling an optimized cooling system for hot metal rolling. An example is
given.

1. Introduction

The steady-state temperature analysis of a rotating cylinder has attracted the attention of
many researchers in view of important applications of this model to metal-sheet rolling. The
heat flux into the cylinder is due to the direct contact of the roll with the metal sheet, which
has a higher temperature. Since the temperature gradients in the contact area are
predominantly radial, the heat fluxes are calculated with the assumption of one-dimensional
flow resulting from a sudden contact of two bodies with different temperatures. Additional
heat flux is generated at the contact area due to friction and plastic deformation of the rolled
metal [1-5]. A detailed model for the heat-flux calculations in the contact area is given in [5].
A number of attempts have been made to analyze the influence of the cooling systems on the
temperature distributions on the surface of the roll. In analytical approaches, the boundary
conditions were simplified to make the analysis tractable. For example, different analytical
techniques were used [3, 4, 6, 7] to obtain the solution to the problem with the constant heat
flux in the contact area, and the convective cooling,

K aTlar = h(Tc - T), (1)

outside the contact with T, K, and h being a coolant temperature, conductivity, and a
constant. In fact, however, h varies in circumferential direction, having high values in the
area of spraying, and low values in the area of air cooling. Moreover, there is considerable
evidence [8, 9] that at each given point in the spraying area, the coefficient h is not a
constant, but depends on the temperature of the roll. While the scheme with a constant h
probably gives some average representation of the temperature for a given cooling system, it
does not change when sprayers are moved along the surface. Attempts to model more
realistic boundary conditions numerically are known in the literature. Because of the
high-temperature gradients, the grid/mesh should be refined. This creates an enormous
volume of calculations. Bennon [10], for example, attacked a three-dimensional problem,
considering variation of the surface temperature in both axial and circumferential directions.
Computing was extensive; 13,000 nodes were involved. Tseng [11] used a first-order upwind
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scheme to study the heat-transfer behavior of a two-dimensional rotating roll. The upwind
technique leads to a stable numerical process, but it often produces an artificial diffusion
comparable with the real conduction; and, therefore, has poor accuracy. The author remarks
correctly that the case of fast rotation is favorable to this technique and a few results for h
varying in the circumferential direction (but not dependent on the temperature) were
obtained. This approach generates a large system of equations, the solution to which can be
obtained directly or by iteration. In the case h =f(Tc - T), this creates difficulties.

In this paper, we present an iterative algorithm which uses solutions for a problem with
simple boundary conditions - for which the analytical solution is trivial - to obtain the
solution to the problem with the required boundary conditions. This includes the case of h
dependent on both surface position and temperature. We establish the convergence of the
algorithm, and evaluate the rate of convergence directly in terms of the process parameters.
We also demonstrate the efficiency of the iteration on the examples.

2. Governing equations

If the coordinate system is fixed with space and does not rotate with the roll, governing
equation for the steady state temperature distribution can be written

AT - (k) - = ' (2)

where T = T(r, 0), A is the Laplace operator in the polar coordinates r and 0, k is the
diffusivity, and w is the angular velocity.

Boundary conditions in the area of contact with hot metal can be modeled by assigning the
heat flux

aT =f( ) (3)
ar =Rf(),

where r and R are current and outside radii of the roll. At the remainder of the surface,
conditions are modeled by Eq. (1).

If the heat flux at the surface of the roll were given, it could have been presented in a form
of the Fourier series

Tn = A. exp(imO), (4)

where the term m = 0 is omitted and T is a shorthand notation for aT/arI,=R. The
temperature in the roll could have been expressed as

T(r, O) = A o + AmJm(ymr)l{ymJ'(ymr)lr=R} exp(imO), (5)m=-o

where Jm and Jm denote the Bessel function of order m and its derivatives with respect to its
argument yr, ym = --im7-, and i = /-1. Expression (5) is a general form of the solution
to Eq. (2). This can be directly verified by substitution.

Remarks for future use are:
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1. The term AO is the average temperature on the surface. It is not defined by heat flux
(4), but is found from the condition that temperature (5), substituted for T in the right
hand side of Eq. (1) and combined with expression (3), generates a balanced heat flux
across the surface,

9 T, ds =0. (6)

2. Because the temperature and the heat flux are real, pairs of terms, corresponding to m
and -m in Eqs (4) and (5) have to be reciprocally conjugate.

3. The motivation for this work was its application to hot metal rolling where practically
possible values of R(wik) are on the order of 103 . This justifies the use of asymptotic
approximation for the Bessel's functions in Eq. (5), giving

T(r, O) = Ao + AmTm(r) exp(imO), (7)

where

Tm(r) = (1 - i) exp[pm(1 + i)(r - R)1(2pm), (8)

and

Pm= Vmol(2k). (9)

The presence of exponential terms with respect to r - R with a large multiplier, Pm, shows
that indeed the surface temperature variations quickly decay with depth.

Below, we develop an iterative procedure in which the expressions (4) and (5), or (4) and
(7) are used to obtain a practically analytical solution to the problem. We establish
convergence conditions, and give a numerical example.

3. Description of the algorithm

Letting superscripts denote the iteration number, we start with a current iteration for a heat
flux across the surface of the roll, T) . This heat flux should comply with the given
distribution in the area of contact and should meet condition (6), understood for a steady
state. Aside from the aforementioned conditions, the form of the heat flux is arbitrary.

The iterative process can be formulated as follows.

1. Present the heat flux in form (4) and use Eq. (5) to calculate the temperature, with A 0
as yet unknown.

2. Use boundary conditions, Eq. (3), and substitute T(j) for T in the right hand side of
Eq. (1) to obtain the heat flux for the next iteration, j + 1. Choose A 0 to comply with
condition (6).

3. Go to step 1.

The current (j) iteration for temperature and heat flux distribution is treated as an element
T(j) of a function space in one of the norms defined in Section 4. Then we can write
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T (j + ) = PT( j ) , (10)

where P is an operator of the iterative procedure, and the bold face denotes the elements of
a space. We also consider a modified iterative process

T(j+ ' ) = QT(j), Q- (1- )I + aP, (11)

where I is the identity operator. The procedure defined by (11) shows that a subsequent
iteration is obtained as a linear combination of the previous iteration and the new iteration
delivered by the process (10) with weights, respectively, 1 - /. and a. Obviously, for a = 1
process (11) degenerates into (10).

In the following section, we show that iterative process (11) can be made convergent by an
appropriate choice of .

4. Convergence; linear problem

We start with the problem where h depends on the circumferential coordinate alone and
does not depend on temperature. Then the problem becomes linear, and convergence does
not depend on the right hand side of all equations. We will assume in this section that T = 0
and T = 0 in the area of contact. We start with a non-zero approximation. If in the
considered iterative process it converges to zero, then for the problem with Tn 0 and Tc 0
it converges to the required solution.

This statement is useful for our purposes:

LEMMA 1. If (T, PT) < B(T, T), VT, B < 1, and operator P is bounded, then there exists
such a sufficiently small a, 0 - a < 1, that iteration (11) converges.

Proof. It is sufficient to show that

(QT, QT)/(T, T) - 1, VT. (12)

By definition,

(QT, QT) = (PT + (1 - )T, APT + (1 - a)T)

= (1 - 2 / + /L2)(T, T) + 2 /2(1 - a)(T, PT) + /a2 (PT, PT) . (13)

Expression (13) implies

(QT, QT)/(T, T) < (1 - 2 + a2) + 2 ,2(1 - )(T, PT)/(T, T) + /a211PI2

< (1 - 2) + 2ua(T, PT)/(T, T) + 0(/a2 ) < 1 - 2 (l (1- B) + O(/. 2 ).

(14)

By definition, 1 - B is positive, and O(Ua2 ) can be discarded if / is small. This shows that
(12) is true if A is sufficiently small.

Lemma 1 is valid for arbitrary inproduct and norm. We will show now that for the
considered process, the conditions of the lemma are met in the Sobolev norm W'(A), see
[13].
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We define a function space by introducing a scalar product and a norm:

(u, v) = (uvn + vun) ds + 2 auv ds, (15)

Iul112 = (U, U) . (16)

In Eq. (15), prime shows that the contact area is omitted, a = h/K, and as before, u is a

shorthand notation for u/larlr=R. It can be shown by integration by parts that

(u,u) = 2(f uuds + au2 ds) =2(f grad(u)2 dA + u2ds)>0 u . (17)

Therefore, norm (16) is equivalent to that of the Sobolev's space W2(A). We also introduce
an auxiliary scalar product and norm by

(u, v)1 = (uvn + vu) ds, (18)

Ilull = (, U), (19)

It follows from the embedding theorems that this norm is also equivalent to norm (16). We
can further reduce form (15) to

(u, v) = F (uv n + vun + 2auv) ds, (20)

by artificially assuming that a = 0 in the area of contact.
We treat a temperature and all its derivatives, including the normal derivatives on the

boundary, obtained for an iteration (j), as an element T( j ) of the Sobolev function space in
the norm defined above. Moreover, all iterations belong to the subspace of solutions to Eq.
(2), and therefore mapping P is a mapping from this subspace into itself. In contrast to a
more common procedure, we start with the normal derivative at r = R and then uniquely
reconstruct the temperature. A fine point here is that although the constant AO for the
element of the set T(j ) is defined from the substitution for the current temperature T(i ) in
Eq. (1), the heat flux itself generated this way already belongs to the element T( j+ ' ) .

LEMMA 2. In the scalar product and the norm given by (15, 16)

(u, Pu) - 0.5(u, u) 0 . (21)

Proof. Using the expression

(PU)n = -aU , (22)

following from the definition of the iterative process, we can write:

(u, Pu) -0.5(u, u) = (Pu), + (Pu)u, + 2au(Pu)} ds - (uun ds + au2) ds

= [u(P) + (Pu)u - ((Pu)n(Pu) - au(Pu))] - [uu ds - u(Pu)n]) ds
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= {[(PU) - (Pu))n (Pu)] + [uPu) +(Pu)n -(Pu)(Pu) - uun]} ds

= {[- au2
- (Pu)n(P)] + [u(Pu)n + (Pu)u n - (P)n(P) -uu]} ds

= - au2 ds - 0.5(Pu, Pu)l -0.5[-2(u, Pu)l + (Pu, Pu)l + (u, u)l]

= - j au2 ds - 0.5(Pu, Pu)l -0.5(Pu - u, Pu - u)1 0. (23)

This means that lemma 2 is correct and that the first condition in lemma 1 is met with
B = 0.5. We repeat here for the sake of clarity that the bold face denotes the elements of the
spaces, while the plain text denotes the value of a function for the current coordinates r and
0.

LEMMA 3. Operator P is bounded. This will be shown in the following section in the
course of investigation for the non-linear problem by direct application of expressions (4)
and (5).

The result of this section can be formulated:

THEOREM. The iterative process (10) is convergent in norm (16) with the parameter 
taken sufficiently small.

5. Convergence; non-linear problem

In a non-linear problem convergence depends on an initial approximation. Suppose that we
already have an approximation in the neighborhood of the solution, and the suggested
algorithm is a way to improve it. We also assume that the expression a = a(T) is reasonably
well-behaved, for example, it is non-negative, continuous and bounded in the neighborhood
of solution. This means among other things that aTlar on the surface is uniquely identified
by Eq. (1) when T is given, and vice versa, T is unique when aTlar is given. In further
derivations, T is taken as a reference point. Then other implications of these assumptions
can be written as:

-d[a(T)T]/dT 0; T(r, 0) 0 . (24)

Violation of the first condition in (24) would mean that the heat flux from the roll to coolant
decreases as the temperature difference at the interface increases. Violation of the second
condition would result in the temperature of the roll being lower than the coolant
temperature in the neighborhood of solution. Both are physically unreasonable. These
conditions cover a wide variety of descriptions, including radiative heat transfer with
aTIan = bT 4 , since it is equivalent to (1) with a = h/K = bT3 , T = 0.

The scalar product and the norm defined by (15) and (16) are not applicable for non-linear
case, because a itself depends on the iteration. However, under the described conditions, we
still can use norm (19) or either of the following scalar products and corresponding norms
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(u, v) 2 = (v.)(un) ds, (25)

(u, v) 3 = (uv) ds, (26)

to establish convergence. Suppose, for example, that the surface temperature is convergent
in the Hilbert space L2 , as given by (26). Then, because of Eq. (1), the process is convergent
in norm lull2, and due to Schwarz's inequality ([14], p. 11) it is also convergent in Ilull1.
Using the same reasoning, we conclude that if the process is convergent in the norm defined
by (25), it is also convergent in the norm given by (26). Further, we will use the scalar
product (25) with subscript 2 being omitted.

Suppose, a current approximation, j, is given by expressions (4) and (5) or (4) and (8).
Let the exact solution to the problem be given by Eqs (4) and (7). Let also a current
iteration, j, be

Tj )= > (Am + 8Am) exp(imO), (27)
M= -

T(r, )(j ) = E (Am + aAm)(1 - i)(2pm) exp[pm(1 + 1)(r-R)+ imO] . (28)

Since PT = T, where T is the true solution, by definition, the iterative process converges if

IIPT(j) - PTII / IIT' - TII < 1 . (29)

Orthogonality conditions

f exp(imO) exp(ikO) dO = {0 if m -k; 2Z if m = -k}, (30)

yield

lIT(j ) - Tll2 = | Am exp(imO) i 6Ak exp(ikO)R dO = 4rR 8Am12. (31)
Mrn=- k=m m=l

The left hand side of inequality (29) is evaluated with the assumption that all sAm are small.
Therefore, all the corresponding deviations from the exact solution in temperature, heat
fluxes and a, are small and can be approximated with one linear term of Taylor's expansion.
Then

PTj) - Tn = -{d[a(T)T]/dT}) T

= -{d[a(T)T]/dT {Ao + AAm(1 - i)(2pm) exp(imO) , (32)

from Eq. (1), and from the definition of the operator P. Therefore,

IIPT(J'- PTII 47rR 2°- + 8A _m(1-i)/(2pm)l2 max{d[a(T)T]/dT} . (33)
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In this transition from (32) to (33), inequalities (24) were used.
The upper bound for ratio (29) can be evaluated by retaining just one, the least favorable,

term in sums (31) and (33). This happens for m = 1, giving the convergence criteria in terms
of rolling process parameters

max{d[a(T)T]/dT}/lp = max{d[a(T)T]/dTr}2kw < 1. (34)

In the case of linear problem a does not depend on the temperature. Therefore, iterations
(10) converge if

max(a)V2_k/ < 1. (35)

The following remark should be made. The increment A 0o in Eq. (32) is not independent,
but should follow the increments of BAm in order to maintain the balanced heat flux across
the surface of the cylinder. However, accounting for this additional term in ratio (29)
introduces small changes in inequality (34) of an order of 1/p, and therefore, it can be
neglected.

6. Discussion

The following remarks are intended to place the present approach in a proper perspective in
relationship with other papers on this topic.

6.1. Some useful insight related to the asymptotic solution of Eqs (7) and (8) can be
obtained by treating a steady-state problem for a half-plane subjected to a heat flux, with a
period 2rrR moving with the speed wR along the surface, y = 0. The governing equation is

a2T a2T oR aT
-- -~ - = 0 (36)

ax
2

ay
2 k ax (36)

Let the heat flux on the surface be given as a Fourier series

y = Amexp(imxlR). (37)

Then the solution of (36) is

T(x, y) = A o - E (Am/bin) exp(-bmy + imxlR), (38)

where

bm = R i-Vm-iwR 2 k, (39)

and as before, the terms with m = 0 in (37) and (38) are omitted. The value of coR 2 Ik in (39)
is in the range 0.5 * 106 to 5 * 106 for all practical rolling processes. Even if we take 1000
terms in the Fourier series, m is still a small number in the second radical in (39) and can be
omitted. Then (38) becomes identical to (8). Formally, this approximation results from
neglecting the first term in (36). Therefore, the asymptotic expression (8) is the solution for
a cylinder unwrapped into a half-plane.
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6.2. In papers [3, 4] the form of solution is similar to that given by (5), although the
coefficients are different, because the boundary conditions here are more complicated. In
principle, this form could be used to obtain the solution of the problem with the required
boundary conditions, but it would lead to a system of non-linear algebraic equations which is
difficult to solve. Even in the linear case, the matrix is neither diagonally dominant nor
positive definite, and the round-off error could be significant for a sizable problem. One may
view the present algorithm as an iterative procedure of solving these equations. We also note
that the authors of papers [3, 4] presented the formulae in the form with real and imaginary
parts being separated, yielding much longer expressions with Kelvin's functions Ber and Bei.
Probably, it did not provide any advantages because the subroutines for the Bessel functions
of a complex argument are more readily available than the subroutines for Ber and Bei
functions.

6.3. In finite difference/element approaches like that in [9, 12], the volume of calculations
is prohibitive. Since the radial gradients predominate, the problem is most often treated as a
sequence of one-dimensional calculations with the boundary conditions updated as the
"beam" rotates and enter different cooling areas. The steady-state solution is treated as the
transient problem limit. As Tseng notes [11], at least 240 steps are needed to simulate one
revolution. Hundreds of thousands of steps are needed to reach the steady-state. We add,
that as a result of round-off error accumulation, and the neglected gradients in the
circumferential direction, the temperature at the same point will change from revolution to
revolution, and probably the steady state cannot be reached at all. To great extent, this
problem has been overcome in view of fast developments in the power of contemporary
computers. However, in certain cases, when fast decisions are needed, for example, in a
control system, the present algorithm could be useful.

6.4. Finally, we comment on our experience with the present algorithm. Although it is
predominantly analytical, the numerical harmonic analysis was used to decompose the given
heat flux into the Fourier series (5). For the set of problems we solved, 200-400 points were
sufficient for accurate representation. Since only summation without solving the system of
equations was needed, a 10 or even 100 fold increase in the number of terms and integration
points would not be prohibitive, if it were required.

Evaluations (34) and (35) or conservative. We found, that in many cases, the process (11)
was still convergent with j/ = 1 and these conditions not being met. As expected in the linear
cases, the process was always convergent regardless of parameters of rolling and initial
approximations. After the appropriate choice of Az had been made, it took a few seconds to
solve the problem on a medium size computer, a VAX in our case. We started with A = 1,
and a satisfactory value was obtained after 2-3 attempts by dividing the current trial value by
2. In general, convergence for the non-linear case depends on the initial approximation. For
this process, however, we failed to find a set of parameters and initial approximations
leading to a divergent process.

Our experience shows that for the parameters in a practical range convergence with three
decimal places can be obtained in 2 to 30 iterations. In the latter case the coefficient had to
be reduced to 0.125.

7. Example

We consider temperature distribution in a roll, k = 0.02 m 2 /hr, R = 0.3 m, angular velocity
o = 1 revolution per second, with the following boundary conditions.
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Fig. 1. Surface temperature distribution for two versions of cooling.

Contact area: 0 0 - 4.5°; aT an = q K = 1.415 * 106, C/m.
Cooling area: 10 ° 0 < 46°; oTlon = a(T c- T) = [(1000 + 0.1(T - Tc)](Tc - T), T and T in
°C, and a in 1/m. [Outside the specified cooling area, aTlan = 0.] The results are given in
Fig. 1 by the solid line. The line with circles shows the temperature distribution when the
cooling system is moved on the other side with respect to the contact area, 314 ° - 0 - 350° .

The average temperatures, respectively, are 229°C and 336.3°C. The difference suggests that
the idea of averaging a over the roll surface is not very useful.

Finally, Table 1 demonstrates the convergence of surface temperatures. This table was
generated by inspection of temperatures in any two subsequent iterations, finding the point
with the largest difference, and recording the absolute value of this difference. We can see
that for the presented example, seven iterations, obtained with /z = 0.5, are sufficient for any
practical purposes.

Figure 2 shows more detail in the temperature distribution in the neighborhood of the
contact area. As expected, the temperature variations quickly decay with depth. We also

Table 1. Surface temperature convergence

Iteration Maximum temperature
number difference for two

subsequent iterations

1 341.04
2 98.26
3 4.66
4 1.56
5 0.38
6 0.05
7 0.006
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Fig. 2. Surface and subsurface temperature distribution.

note, that for a fixed depth, the maximum temperature is not under the contact area, and
moves in the direction of rotation with depth.

8. Conclusions

In this paper, we presented an iterative algorithm which leads to a practically analytical
solution to a problem of rotating cylinder with complicated, including non-linear, boundary
conditions. Sufficient convergence conditions are given. This algorithm turns out to be
numerically efficient in applications to metal roll modeling, and is a feasible alternative to a
purely numerical scheme in cases when fast calculations are crucial, for example, in
developing a cooling control system. The developed algorithm is intended to use for analysis
of the cyclic thermal stresses in the roll, thus leading to an optimal cooling for survivability of
the roll. Once temperature is obtained, the stress analysis is a much simpler task, since the
surface is of the simplest possible form, a circle. Results will be reported later.
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